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Abstract 

The sharing economy allows suppliers full autonomy over when and how long they work, creating 

challenges for managing the supply in response to demand changes. In this study, we investigate 

how to subsidize suppliers to increase supply in a cost-effective way within the context of a ride-

sharing company. We study the key economic and behavioral factors that determine suppliers’ 

daily work decisions with a structural model that accounts for the full heterogeneity of work costs 

across drivers. We combine a field experiment with observational data to identify the income 

sensitivity and work costs of drivers. A novel nested iteration procedure is proposed to address the 

computational challenge due to the high dimensionality of the parameter space, as such the model 

estimation becomes scalable. Using the estimation results, we conduct a counterfactual analysis to 

explore the costs of different subsidization strategies. We show that a time-based non-targeting 

subsidization based on the time drivers work will incur loss to the platform because drivers are not 

very income-sensitive; however, an individual-based targeting subsidization based on the cost 

estimates of individual drivers can help the platform save 51-83% of the cost. Our findings 

highlight the importance of understanding and leveraging driver heterogeneity to improve the 

profitability of sharing platforms. 

  

https://www.dropbox.com/scl/fo/ns7atw3p33oncol179p81/AJL2HM9EVNSVpbFTFKVn6II?rlkey=r7vhkjhc4a688f4thst7aqrsc&st=zyr4mrxv&dl=0
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1. Introduction 

Gig economy, particularly the ride-sharing sector, has experienced a significant growth in recent 

decades. According to a recent survey1, the global market size of gig economy was $91.63 billion 

in 2023 and is expected to reach $418.53 billion by 2033. Unlike traditional industries, the gig 

economy offers suppliers much flexibility in supply decisions. As an illustration, different from 

taxi drivers who have to follow schedules, drivers on ride-sharing platforms can decide when and 

how long to work. Such flexibility however creates challenges for platforms to manage supply in 

response to demand changes. When the demand is high, for example, a low capacity of supply can 

lead to revenue loss and even affect future profit due to unsatisfactory experience on the demand 

side. 

Various strategies have been employed to balance demand and supply. Platforms have typically 

relied on AI matching algorithms that dispatch drivers to satisfy rider demand.2 Surge pricing has 

also been used in the time of high demand. While surge pricing helps increase the driver supply, 

riders may feel being exploited and thus have poor usage experience. Another common strategy is 

to subsidize drivers, offering them extra incentive to work during certain hours and in certain areas 

when demand surges. This strategy however is costly for ride-sharing platforms as they have to 

sacrifice their share of revenue from each order. It is important for platforms to optimize subsidies 

that can effectively motivate the supply and at the same time minimize the cost. This is the research 

focus of this paper. 

An effective subsidization strategy in response to demand changes requires a comprehensive 

understanding of the underlying factors that drive the work decisions of drivers, as these factors 

will determine their responsiveness to the subsidy. To study this important managerial question, 

we use a rich dataset from a ride-sharing platform in Vancouver, Canada. Similar to other ride-

sharing platforms such as Uber and Lyft, drivers on the platform differ in their overall tendency to 

work. While some drivers work for long hours in a day, others choose to work for significantly 

fewer hours and even not to work at all. Furthermore, some drivers prefer to work in the morning 

but some others prefer to work in the afternoon or at night. There is also a large heterogeneity in 

their work choices during weekdays and weekends. 

 
1 https://finance.yahoo.com/news/global-ride-sharing-market-size-
110000245.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAANybyFh
xzwIelSlfA70SeE31Z_SBgv8t3KQeAj26aGH6KFSrbQpytzKaNTN-JQL-m2Jx0K8vw4Uka78Sf5qJaLTEx-
LQKM0x9CWVHemWcNQuIOFt0YLm-2Vs7xFX5QA9gV80aiaMDkHw8gfAu6GjuTjXNIlIuAPvJ44Hfl-ZxmE3, assessed on 

May 17, 2024 
2 For example, see “Quantifying Efficiency in Ridesharing Marketplaces” (by Alex Chin,  https://eng.lyft.com/quantifying-
efficiency-in-ridesharing-marketplaces-affd53043db2) that describes how the core system at Lyft works.   

https://finance.yahoo.com/news/global-ride-sharing-market-size-110000245.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAANybyFhxzwIelSlfA70SeE31Z_SBgv8t3KQeAj26aGH6KFSrbQpytzKaNTN-JQL-m2Jx0K8vw4Uka78Sf5qJaLTEx-LQKM0x9CWVHemWcNQuIOFt0YLm-2Vs7xFX5QA9gV80aiaMDkHw8gfAu6GjuTjXNIlIuAPvJ44Hfl-ZxmE3
https://finance.yahoo.com/news/global-ride-sharing-market-size-110000245.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAANybyFhxzwIelSlfA70SeE31Z_SBgv8t3KQeAj26aGH6KFSrbQpytzKaNTN-JQL-m2Jx0K8vw4Uka78Sf5qJaLTEx-LQKM0x9CWVHemWcNQuIOFt0YLm-2Vs7xFX5QA9gV80aiaMDkHw8gfAu6GjuTjXNIlIuAPvJ44Hfl-ZxmE3
https://finance.yahoo.com/news/global-ride-sharing-market-size-110000245.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAANybyFhxzwIelSlfA70SeE31Z_SBgv8t3KQeAj26aGH6KFSrbQpytzKaNTN-JQL-m2Jx0K8vw4Uka78Sf5qJaLTEx-LQKM0x9CWVHemWcNQuIOFt0YLm-2Vs7xFX5QA9gV80aiaMDkHw8gfAu6GjuTjXNIlIuAPvJ44Hfl-ZxmE3
https://finance.yahoo.com/news/global-ride-sharing-market-size-110000245.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAANybyFhxzwIelSlfA70SeE31Z_SBgv8t3KQeAj26aGH6KFSrbQpytzKaNTN-JQL-m2Jx0K8vw4Uka78Sf5qJaLTEx-LQKM0x9CWVHemWcNQuIOFt0YLm-2Vs7xFX5QA9gV80aiaMDkHw8gfAu6GjuTjXNIlIuAPvJ44Hfl-ZxmE3
https://eng.lyft.com/quantifying-efficiency-in-ridesharing-marketplaces-affd53043db2
https://eng.lyft.com/quantifying-efficiency-in-ridesharing-marketplaces-affd53043db2
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To have a full understanding of what leads to the heterogeneity in work choices, we develop and 

estimate from data a structural model that can quantify the different economic and behavioral 

factors driving drivers’ decisions. In our model, drivers evaluate not only the expected gain but 

also the cost of driving to decide the optimal daily work schedule that will maximize their payoff. 

To fully capture the heterogeneity in drivers’ work choices, our model employs a semi-parametric 

approach. While the payoff function is parametric, we allow each driver to have a unique marginal 

cost of work, and that the cost varies across morning, afternoon, and night, as well as between 

weekdays and weekends. Such a model specification allows us to profile drivers based on their 

driving costs in different time periods. 

Our study faces two main challenges. First, to predict how drivers react to subsidies we have to 

estimate their income sensitivity. However, it is difficult to use observational data alone to separate 

income sensitivity from work cost. For example, observing many drivers working at nighttime 

could be due to a high income sensitivity (i.e. they are motivated by more orders during those 

hours) or a low cost (e.g. they do not work for full-time jobs at night). To tackle this challenge, we 

collaborate with the platform by running a field experiment for four weeks, during which we 

exogenously manipulate the level of subsidies across time periods. Such experimental data helps 

us identify the sensitivity of drivers for the expected income change. We combine the experimental 

data with observational data, in which drivers did not receive any subsidy, to further pin down the 

individual- and time-specific work costs.  

The second challenge is that, since we estimate the work costs of each driver, the dimensionality 

of model parameters increases linearly with the number of drivers and, consequently, the 

computational burden grows exponentially. As the model is highly non-linear, the dimensionality 

issue may also lead to local optima during the model estimation. If the issue cannot be resolved, it 

implies that our model estimation is not scalable and, therefore, whatever solutions based on our 

study cannot be implemented for large businesses.  

We propose a novel nested iteration estimation method to tackle this challenge. Specifically, we 

divide the model parameters into one set of parameters, 𝚯𝟏 , which are shared by all drivers, and 

another set, 𝚯𝟐 , that are individual-specific (i.e. each driver’s work costs). Only the dimensionality 

of 𝚯𝟐  increases with the number of drivers. Our estimation proceeds as follows: given trial 𝚯𝟏 , the 

inner loop estimates Θ2𝑖   for each driver. In the outer loop, we search for the optimal 𝚯𝟏   that 

maximizes the full likelihood. The inner loop is repeated each time 𝚯𝟏  is updated at the outer loop. 

Since 𝚯𝟐  is estimated separately for each driver in the inner loop, while the dimensionality of 𝚯𝟏  

remains fixed, the complexity of model estimation only increases linearly with the number of 

drivers. We use simulation studies to show that, compared with the standard method of jointly 

estimating 𝚯𝟏  and 𝚯𝟐 , the nested iterative estimation procedure can significantly reduce the model 
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estimation time, even when there is only a small number of drivers. Furthermore, the model 

estimation can be facilitated by large-scale parallel processing in the inner loop using the 

platform’s computation resource. Therefore, business models that rely on the model estimation 

results are scalable.  

The estimation results reveal substantial cost heterogeneity across drivers. Within each time period 

(e.g., weekday morning), there is a significant spread in the distribution of cost estimates, which 

generally follow a normal distribution. Additionally, we observe a high correlation between the 

estimated costs within a day for the same drivers, with higher correlations between adjacent time 

periods than between non-adjacent ones. For instance, the correlation between weekday morning 

and weekday afternoon is higher than that between weekday morning and weekend afternoon. 

Drivers also exhibit similar working preferences between weekdays and weekends: the correlation 

of costs for the same time periods on weekdays and weekends is higher than for different time 

periods across these days. Furthermore, we find that drivers are not income-sensitive, as 1% 

increase in income only results in a 0.06% increase in working time. Our analysis also indicates 

that drivers face startup costs, psychological flow, and fatigue when deciding when to work. 

Using the model estimates, we conduct a counterfactual study to investigate how to subsidize 

drivers in response to demand changes in a cost-effective way. We assume that the platform faces 

a 5% increase in demand on a specific day and needs to increase drivers’ work hours to balance 

this demand. In the base case, we assume no subsidy is offered and calculate how drivers are 

incentivized by the higher expected number of orders to increase their work hours, based on the 

model predictions. We find that even in the most ideal scenario, where the 5% increase in demand 

is fully reflected in drivers' expectations, the total working time increases by just around 0.035% 

and consequently the total number of orders can be fulfilled by drivers only increases by around 

4%, suggesting that the supply does not match the increased demand without subsidization. This 

minimal increase is due to drivers' low income sensitivity. These results serve as a benchmark for 

the subsidization policy. The first counterfactual policy we consider is time-based non-targeting 

subsidization, under which the platform offers a unique subsidy in each time period (morning, 

afternoon and night). Drivers who work during the time period are offered the same amount of 

subsidy for each order they complete. This policy is similar to the second-degree price 

discrimination. In the second scenario, we assume that the platform offers individual-based 

targeting subsidization with the objective of minimizing the subsidization cost. Who to offer 

subsidies and how much are the subsidies are based on the individual cost estimates. This practice 

is similar to the third-degree price discrimination. In both scenarios, we impose the constraint that 

the increase in the supply capacity, i.e. the total number of orders that can be fulfilled by drivers 
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at work during the time period, cannot be smaller than 5%, as such the supply can balance the new 

demand.   

Under the time-based non-targeting subsidization, we find that the platform must offer significant 

subsidies, which are generally highest in the morning (when supply is low) and lowest at night 

(when supply is the highest), to balance the increased demand. Consequently, the platform incurs 

a loss of 14% to 47% relative to what it could earn without offering subsidies. Under the individual-

based targeting subsidization, we find that the best strategy relies on how the demand increase 

affects drivers’ income expectation. If the income expectation fully reflects the higher demand, 

subsidization should be offered to drivers with higher work costs; otherwise, the company should 

target drivers with lower costs is more effective. In either case, subsidies should be offered to 

drivers with high work efficiency, i.e. those who can take more orders in an hour. The subsidization 

cost in this targeted approach is 51% to 83% lower than under the time-based non-targeting 

subsidization. Consequently, the platform can achieve 79% to 98% of the profit level when it does 

not offer subsidies. Although the profit is still lower than the benchmark, having more drivers on 

the street to fulfill the increased demand helps maintain customer satisfaction. Balancing demand 

and supply is critical for the platform's long-term growth. 

Our study contributes to the marketing literature in two ways. Substantively, we show how a ride-

sharing platform can target individual drivers with subsidization in a cost-effective way. In addition 

to AI matching algorithm and surge pricing, subsidization is an important instrument for ride-

sharing platforms to manage driver supply in response to the demand change. Methodologically, 

we introduce a novel nested iteration procedure to make sure that, while our structural model 

captures full heterogeneity among drivers, the model estimation is still scalable. As such, the 

method can be used by large businesses in other empirical settings. As an example, ecommerce 

platforms can apply our method to estimate individual-specific product preferences and use the 

results to facilitate targeting promotions at the customer level. 

The rest of the paper proceeds as follows: we first review the relevant literature and discuss our 

contribution. We then explain the empirical context and the dataset used in the paper and show 

reduced-form evidence regarding drivers’ supply behavior. Building on the evidence, we develop 

our structural model and propose a novel nested iteration method for estimation. Next, we show 

the estimation results and the insights derived from the counterfactual analysis. Finally, we 

conclude the paper with discussion on implications and limitations. 

 

 

 



   

 

6 

 

2. Literature Review 

Our paper is connected to several streams of research. First, our study contributes to the general 

literature on labor supply. As one of the most important economic decisions, labor supply is critical 

for understanding various micro and macroeconomic outcomes (Chetty et al., 2011; Keane and 

Rogerson, 2015). Previous literature investigates the labor supply choices at both the extensive 

margin (i.e., the choices about whether to participate in labor force) and intensive margin (i.e., the 

choices about hours of work) (Meyer 2002; Chetty et al., 2011; Attanasio et al., 2018). These 

decisions can be affected by various external and internal factors, such as tax (Keane 2011), 

expected wage (Attanasio et al., 2018), commuting (Monte et al., 2018), and household 

composition (Pabilonia and Ward-Batts, 2017). Our paper is particularly related to the labor supply 

decisions in the taxi industry. While taxi industry shares similarities with many other industries in 

terms of labor supply decisions, taxi drivers have the flexibility of when they can terminate their 

work shift for day. A large stream of literature therefore identifies whether drivers have an earnings 

target and how it influences their decision to stop working. The seminal work by Camerer et al. 

(1997) suggests a negative wage elasticity such that cumulative earnings within a day increase the 

likelihood of quitting work within the same day. They interpret this as evidence that drivers have 

an earnings target, and they are more likely to stop working after reaching this target. Following 

the work, several subsequent studies revisit the earnings target hypothesis using various samples 

and methodologies. For instance, Farber (2005) and Farber (2013) use alternative measurements 

of daily wages and larger samples to show that drivers respond positively to unanticipated as well 

as anticipated increases in earnings opportunities. Other studies formally develop structural models 

incorporating drivers’ reference-dependent preferences and show that drivers may indeed have 

both earnings targets and supply hour targets (Farber 2008; Crawford and Meng 2011; Thakral and 

To 2021). This stream of literature primarily focuses on drivers’ supply in the traditional taxi 

industry, where drivers usually have scheduled shifts. Therefore, drivers’ primary supply decision 

is whether they stop working for the day. This is different from ride-sharing platforms, where 

drivers can flexibly choose when to work. For instance, drivers can work in the morning and night 

while taking a break in the afternoon. Our research complements this stream of literature by 

explicitly modeling such flexibility and providing novel insights into how drivers’ heterogeneous 

costs influence their working decisions. 

Our paper is also related to the research examining users’ participation on sharing economy 

platforms. Previous studies suggest that the gig economy provides a flexible channel for people to 

find employment opportunities. Therefore, gig economy platforms are particularly relevant for 

unemployed and underemployed workforces (Burtch et al., 2018). For instance, Huang et al. (2020) 

show that unemployment is positively associated with participation in the online labor market, 
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particularly in areas with better internet access and younger, more educated populations. Similarly, 

using data from South Korea, Liu et al. (2023) demonstrate that the entry of online food delivery 

platforms can significantly boost the employment rate for female workers who can better use their 

time beyond their housework. Specifically for the ride-sharing platforms, Chen et al. (2022) 

examine driver supply on DiDi, the largest ride-sharing platform. They similarly develop a 

structural model to capture drivers’ supply decisions but do not allow for full heterogeneity among 

drivers. Most relatedly, Chen et al. (2019) investigate the value of flexible work on Uber and 

estimate drivers’ reservation wages for each hour using a Bayesian method. Therefore, drivers’ 

heterogeneity in their model is captured in their reservation wages. Building on prior literature, we 

capture drivers’ heterogeneity through their working costs. The advantage of this approach is that 

we can incorporate drivers’ temporal preferences for working (e.g., working on weekday mornings 

rather than weekend mornings) and interdependency over time, such as how working in the 

morning influences working in the afternoon within the same day. Therefore, our cost specification 

captures more nuances of driver supply on the platform. 

Finally, the insights from our empirical and counterfactual analysis also contributes to the literature 

on subsidy. Firms and governments routinely use subsidization to nudge people’s behavior towards 

the desirable direction. For instance, the famous U.S. federal subsidy program, the Special 

Supplemental Nutrition Program for Women, Infants, and Children (also known as WIC), provides 

subsidy to purchasing food and aims to safeguard the nutrition in the diet for vulnerable population 

groups (Owen and Owen 1997). Previous study demonstrate that the subsidy can influence 

subsidized consumers’ food consumption (Hinnosaar 2023), birth (Hoynes et al., 2011), and long-

term lifetime outcomes (Jackson 2015). Prior papers have studied several other programs, such as 

subsidizing rural consumers to purchase household appliances (Xiao et al, 2020), agricultural 

production subsidy (Fan et al., 2024), and subsidy for medical innovation (Olsder et al., 2022). 

The subsidization program studied in prior literature is usually uniform for eligible recipients. In 

contrast, we leverage the information on drivers’ heterogeneous preferences and customize the 

targeted subsidy at the individual level. We demonstrate that such subsidy design can significantly 

reduce the cost for the platform and achieve better outcomes. 

 

3. Empirical Setting and Data 

3.1. The Platform 

Our study is conducted in collaboration with a local ride-sharing platform in Vancouver, Canada, 

which resembles well-known services like Uber and Lyft. This platform pairs available drivers 

with riders seeking transportation. The matching process begins when drivers log onto the driver-
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side application, indicating their readiness to accept rides. When a ride request is made within a 

certain proximity, the driver receives a notification to either accept or decline the ride. Before 

accepting, drivers are not informed of ride details such as the final destination, fare, or rider 

information. Once a ride is accepted, the platform reveals the pickup location and the rider’s 

contact details, but the final destination is disclosed only when the driver picks up the rider. This 

protocol is designed to prevent selective acceptance of rides based on destination, promoting 

equitable ride opportunities across the platform. 

Like many other ride-sharing platforms, the platform we study allows drivers to decide their work 

schedule, indicating the voluntary nature of driver participation. This policy ensures efficient 

management of driver availability and system resources while respecting driver autonomy, 

enabling them to adjust their work hours to their personal needs. We measure drivers. We define 

drivers’ working status after they log on to the platform’s app because it indicates that they are 

ready to take orders. Since we also know each order's pick-up and drop-off time, we can use this 

information to infer whether the car is vacant or occupied when the driver is working.  

After a completed trip, riders pay a fee to the platform, calculated based on the trip’s distance, 

duration, and timing. For drivers, the platform collects a fixed initiation fee from each trip. 

Generally, drivers earn 80% of the remaining trip fee as their income, while the platform retains 

the remaining 20%. To incentivize driver supply during peak demand, the company regularly 

implements surge pricing, multiplying the total order price by a factor dependent on market 

conditions. While effective in increasing driver earnings, surge pricing can lead to rider 

dissatisfaction due to higher costs. Alternatively, the platform also offers subsidies, providing 

drivers with an additional amount for each completed order within specified periods. This strategy 

avoids high rider charges while motivating drivers to accept more orders. Compensation for drivers 

is distributed weekly and is derived from both the trip fee and subsidies. 

3.2. Subsidy Experiment 

In this paper, we study drivers’ participation decisions on the platform. These decisions are largely 

based on two main factors: drivers’ expected income and working costs (Farber 2008; Crawford 

and Meng 2011; Chen et al. 2019). Without exogenous variation, it can be difficult to identify these 

two factors separately. For example, observing many drivers working at a certain time period could 

be attributed to either a high-income sensitivity or a low cost. To better distinguish expected 

income from working costs and separately identify their impacts on drivers’ participation decisions, 

we combine a subsidy experiment with observational records to assess drivers' income sensitivity. 

We collaborated with the platform to conduct the field experiment (more details can be found in 

Wang et al. 2023). The experiment exogenously varied the subsidy provided to drivers to influence 
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their supply behavior. The value of the experiment to our study lies in the subsidy manipulation, 

which results in exogenous variation of drivers’ expected income, uncorrelated with drivers’ 

working costs. This helps us disentangle how expected income and working costs distinctively 

influence drivers’ decisions to work on the platform. 

The experiment lasted for four weeks, from June 20 to July 17, 2021. Following the platform’s 

classification, time slots are divided into afternoon (12:00 PM to 5:59 PM) and night sessions (6:00 

PM to 11:59 PM). We exogenously set the subsidy at $2, $4, or $6 per trip for afternoon sessions 

and $0, $3, or $5 per trip for night sessions. These subsidies were applied differently across the 

week, divided into three-day groups: Monday to Thursday, Friday to Saturday, and Sunday, with 

each group receiving rotating subsidies. Each subsidy level was offered once per week in each 

time slot. The initial three weeks followed a detailed and balanced subsidy schedule, while the 

fourth week's schedule was simplified, offering only $0, $4, and $5 subsidies across all time slots. 

Details of the subsidy schedule is in Table 1. 

 

Table 1. Subsidy Schedule ($ Per Completed Trip) 

Week 1  Week 2 

Mon.-Thu. Fri.-Sat. Sun.  Mon.-Thu. Fri.-Sat. Sun. 

6 2 4  2 4 6 

0 5 3  3 0 5 

       

Week 3  Week 4 

Mon.-Thu. Fri.-Sat. Sun.  Mon.-Thu. Fri.-Sat. Sun. 

4 6 2  4 5 5 

5 3 0  0 0 5 

 

3.3. Data 

The platform provides a detailed dataset with comprehensive demand and supply information for 

all drivers and riders. This dataset not only covers the experiment period (June 20 to July 17, 2021) 

but also extends from January 1 to July 30, 2022, during which no subsidy was offered. The 

additional information helps enhance the identification of model parameters. We intentionally 

excluded data from July 18 to December 31, 2021, due to several field experiments the ride-sharing 

company conducted, which could skew the drivers’ earning behaviors.3  

 
3 For example, one experiment during this period featured a competition where drivers could earn monetary rewards by 
completing a designated number of trips within a specific timeframe.  
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The demand-side data is organized at the order level, where an order represents a ride request made 

by a rider. For each order, we have the rider ID, driver ID, and timestamps for order requests, 

driver acceptance, pickup, and drop-off. Additionally, we know the key financial details for each 

order, including the price of the trip, any surge pricing applied, subsidies provided, and the total 

earnings accrued by the driver. This rich dataset enables us to analyze and estimate drivers' 

expected income for specific periods during the week, providing insights into how earnings 

fluctuate based on time and day. 

On the supply side, the observation unit is at the driver-shift level. For each shift, we observe the 

driver ID and the driver’s logon and logoff timestamps, allowing us to determine when drivers 

begin and end their work in a day. It should be noted that a driver’s car can be either vacant or 

occupied during a shift. We merge the shift data with the trip data to ascertain the status of the 

driver (i.e., vacant or occupied). 

This comprehensive dataset allows us to conduct a detailed analysis of drivers' participation 

decisions by examining their expected income and working costs across different periods and 

conditions. 

3.4. Variable Construction 

Time Periods. As discussed previously, drivers make their work decisions primarily considering 

the expected income and working cost, which depend on the time period. To facilitate the analysis, 

we treat a week as one complete temporal cycle and aggregate days and hours into different time 

periods. Specifically, we divide a week into six time periods: weekday morning, weekday 

afternoon, weekday evening, weekend morning, weekend afternoon, and weekend evening. 

Weekdays are Monday to Thursday, whereas weekends are Friday to Saturday. Mornings are from 

6:00 AM to 11:59 AM, afternoons are from 12:00 PM to 5:59 PM, and evenings are from 6:00 PM 

to 11:59 PM. We exclude early mornings (i.e., 12:00 AM to 5:59 AM) from our analysis because 

of the very low level of activity on the platform. 

We make this time aggregation for two reasons. First, the ride-sharing platform uses the same time 

classification during the experimental period. Our time aggregation is aligned with the platform 

operation. Second, the time aggregation is also consistent with temporal patterns of the driver's 

working behavior on the platform. As shown in Figure 1, the average percentage of online drivers 

increases in the morning, stabilizes at a high level in the afternoon, and gradually decreases at 

night. Similarly, we show the average number of working hours by the day of the week in Figure 

2. We find that drivers generally work more on weekends than weekdays, with the exception of 

Sunday. However, because Sunday has similar characteristics to Saturday—people generally have 

the whole day to plan without regular day jobs—we still include it in the weekend category. 
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Figure 1. Average Hourly Driver Distribution 

 

 

Figure 2. Average Number of Working Hours by Day of the Week 

 

Expected income. To model drivers’ working decisions, we need to measure their expected 

income. Directly asking drivers’ beliefs is challenging and may be biased. Following prior 
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literature (Farber 2008; Crawford and Meng 2011; Thakral and To 2021), we use the observed 

order data to approximate drivers’ beliefs. This is justifiable because drivers should also form their 

expectations based on their real earnings, which are reflected in the demand data. 

We construct the belief on the expected income at the driver and hour level. This is because, s imilar 

to drivers’ working behavior, we find substantial cross-driver and temporal heterogeneity in drivers’ 

income. Specifically, for temporal heterogeneity, the total number of orders varies substantially 

within and across days. The total demand increases from morning to afternoon, peaks at 6 PM, and 

then gradually declines. The total demand is also higher around weekends (i.e., Friday to Sunday) 

than weekdays (i.e., Monday to Thursday). This temporal heterogeneity appears to be correlated 

with people’s mobility needs due to work or leisure activities. As for cross-driver heterogeneity, 

given the same time slot, the number of orders each driver takes differs significantly. This may be 

attributed to drivers’ heterogeneous skills in “finding” orders. For example, given that riders’ 

requests will be dispatched to nearby drivers, cruising in a neighborhood with high demand can 

help drivers get more orders. Therefore, more experienced drivers may be more proficient in 

identifying such high-demand areas and eventually have more orders. 

To incorporate such cross-driver and temporal heterogeneity, we decompose the expected income 

for driver 𝑖 in hour 𝑡 as the product of the expected number of orders and the expected earnings 

per order:  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑡 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑟𝑑𝑒𝑟𝑠 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑡 ∗

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟𝑡  (1) 

For 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑂𝑟𝑑𝑒𝑟𝑠 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑡, we first calculate, in each hour (e.g., Monday 10 AM), the 

average number of orders a driver actually took during our sampling period, conditional on the 

driver working in this hour slot. Since we group hour slots into time periods, we pool all 

observations within a time period to calculate the average. One limitation of this calculation is that 

drivers should work at least once for a given time slot. However, it is likely that some drivers may 

never work in a time period (e.g., weekday morning), leading to a missing data problem. To address 

this limitation, we impute the expected number of orders for the time period that a driver never 

works by multiplying a factor with the average expected number of orders for all other drivers. We 

obtain this factor by comparing the average expected number of orders for this driver and all other 

drivers in other time slots. The basic idea is that if a driver takes many (or few) orders relative to 

the platform average level in general, he should similarly take many (or few) orders if he had ever 

worked in the time period (i.e., weekday morning).  

The expected earnings per order is the sum of the expected fee paid to the driver and the subsidy 

per order offered by the platform in hour t: 
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟𝑡 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝑒𝑒 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟 +  𝑆𝑢𝑏𝑠𝑖𝑑𝑦 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟𝑡 (2) 

While the subsidy per order is directly controlled by the platform and observed by us as researchers, 

we need to measure the expected fee per order paid by the rider. We calculate the average fee 

across all orders, which has no temporal and cross-driver variation. We make this simplification 

for two reasons. First, while the incidence of orders may be highly dependent on time, the duration 

of the trip, a key factor that determines the fee, should be much less dependent on time, resulting 

in limited temporal variation. For instance, there is no strong reason to believe that riders tend to 

take significantly longer trips in the morning than in the afternoon. Second, drivers do not know 

the order details until they pick up the order. Therefore, order selection may be difficult for drivers, 

leaving much less room for them to influence the order fee with their skills. This limits cross-driver 

variation. It should be noted that our model does not rely on the simplification of the expected fee 

per order. We can easily accommodate heterogeneous expected fees if needed.  

Supply. We construct drivers’ work hours using the driver shift data. We segment each driver’s 

shift into hourly intervals and define that a driver is working in an hour if they are logged into the 

platform app for at least 10 minutes (Chen et al., 2019). Therefore, our main outcome variable for  

measuring drivers’ supply is the number of hours they worked. 

3.5. Descriptive Evidence 

Using our datasets, we present descriptive evidence to understand the underlying factors that 

influence drivers’ work behavior. 

The Heterogeneity in Driver Supply. As previously discussed, the ride-sharing platform allows 

for supply flexibility, enabling drivers to choose when and how long they work. Due to varying 

beliefs about income and work costs, observed supply behavior can differ significantly across time 

and drivers. 

To understand when drivers work, we first examine the distribution of their starting and ending 

times each day. For analytical purposes, we only focus on the duration from 6 AM to 12 AM each 

day. The starting time is defined as the earliest time drivers log on to the platform app each day, 

and the ending time is the latest time they log off. As shown in Figure 3, the starting and ending 

times vary substantially across drivers. Around 55% of drivers start working after 9 AM, whereas 

nearly 30% stop working before 5 PM. This differs significantly from the common working 

schedule of employees. It is important to note that this does not mean drivers work continuously 

between these times, as they may take breaks. 
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Figure 3. Drivers’ Work Starting and Ending Time Distribution 

 

Drivers also differ substantially in the length of their work periods. We first show the distribution 

of total working hours per week in Figure 4. As suggested by Figure 4, drivers exhibit different 

levels of activity on the platform. For instance, about 20% of drivers work over 40 hours, while 

the majority work much less, primarily because most drivers are part-time. 
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Figure 4. Weekly Working Hours Distribution 

 

We further explore the heterogeneity in drivers' working choices by examining time periods. For 

each driver, we calculate the percentage of working hours in each time period during our sample 

period and plot the distribution of these percentages by different time slots in Figure 5. It shows a 

large variation in preferences for time slots. For example, there are significant proportions of 

drivers whose working time is above 50% in the afternoon and at night (see the right side of the 

figure). The morning slot is the least popular choice of working time, as it exhibits the highest 

number of drivers working less than 10% of their total time in that slot (see the left of the figure). 
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Figure 5. Working Hours Choice in Different Time Slot Distribution 

 

We also compare the differences between weekdays and weekends. Specifically, we calculate the 

total weekday and weekend working time over the total working time in a week for each driver 

and plot this in a histogram. The histograms shows that, while a large proportion of drivers split 

their working time equally on weekdays or weekends (see the mode at 50-60% working time in 

the figure), a significant number of drivers have a very strong preference for working on either 

weekdays or weekends, as they spend above 60% of working time on either weekdays or weekends 

(see the right side of the figure). 
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Figure 6. Working Hours Choice in Weekday/Weekend Distribution 

 

In summary, drivers' preferences for both working times and workday choices vary significantly 

across individuals. This variability is likely to be driven by not only drivers’ working time 

preference but also their outside activities, in particular whether they have to work for full time 

jobs. For instance, if drivers need to work for a regular job in weekday morning, it would be more 

difficult for them to work for the ride-sharing platform. We capture such differential value of time 

across drivers by using a flexible cost function. Understanding such cost heterogeneity at the 

individual level is important for more effectively incentivizing them. For instance, subsidizing a 

driver who will never choose to work at weekday morning might not be effective, as the driver 

may have other work obligations during that time. 

The Impact of Income on Driver Supply. Since our major goal is to investigate how to use 

subsidies to encourage drivers to work, we further examine how drivers respond to subsidies. 

Using the experimental data, we regress whether drivers work during a specific hour on the 

exogenously manipulated subsidy. As discussed in the variable construction, we define a driver as 

working for an hour if they log into the platform app for at least 10 minutes. We control for driver 

fixed effects, day-of-week fixed effects, and hour-of-day fixed effects. The results in Column (1) 

of Table 1 suggest that increasing the subsidy encourages drivers to work. Since the subsidy is 

exogenously determined by the platform, we can interpret the estimate as the causal positive 

impact of subsidy on work, indicating that drivers’ working decisions are sensitive to income 

variation. 
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Since drivers decide both whether to work and how long to work, we further examine the impact 

of subsidy on drivers’ working duration. The results in Column (2) of Table 1 show consistent 

findings, indicating that drivers are more likely to work for longer time with higher subsidies.  

Although the estimated coefficients for whether to work and how long to work are statistically 

significant, the magnitudes are relatively small, suggesting that the supply is not very elastic 

toward subsidy changes. This may imply that subsidies are not effective in encouraging supply. To 

investigate whether the platform can offer a more cost effective subsidization plan, which is the 

main goal of this study, we develop a structural model to fully capture the heterogeneity in drivers’ 

supply behaviors.  

 

Table 2. The Impact of Subsidy on Driver Supply (Driver Hour Level Analysis) 

 DV: Whether Working DV: Working Duration (Mins) 

Log(Subsidy+1) 0.001*** 0.052*** 

 (0.0004) (0.020) 

   

Driver Fixed Effect Yes Yes 

Day of Week Fixed Effect Yes Yes 

Hour of Day Fixed Effect Yes Yes 

   

Observations 195,648 195,648 

R2 0.268 0.259 

Adjusted R2 0.268 0.258 

 

4. A Structural Model of Driver Supply 

4.1. Model Overview 

We develop a structural model to characterize drivers’ supply decisions on the ride-sharing 

platform. The supply decision involves determining how many hours a driver  i will work on day 

𝑑. We consider the decision at the time period level  𝑝 ∈ (1, 2, 3), corresponding to morning (𝑝 =

1), afternoon (𝑝 = 2), and night (𝑝 = 3). Drivers will choose the number of work hours (from 0 

to 6 hours) in each time period, namely ℎ𝑖𝑑𝑝 ∈ (0, 1, , 2, . . . ,6). We provide a summary of notation 

in our model in Table 3. 
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Table 3. Notation Explanation  

Notation Meaning 

𝑖 Index for driver 

𝑑 Index for calendar day 

𝑝 Index for time period for the day with 𝑝 = 1 for morning 

(6:00 AM- 11:59 AM), 𝑝 = 3 for afternoon (12:00 PM to 

17:59 PM), 𝑝 = 3 (18: 00 PM to 23: 59 PM) for night 

𝑤𝑑 Index for day of the week (Monday - Sunday) for day 𝑑 

  

ℎ𝑖𝑑𝑝 The working hour driver 𝑖 has at time period 𝑝 on day 𝑑 

𝒉𝒊𝒅 The vector of working hour driver 𝑖 has on day 𝑑 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑑𝑝 The expected earning hour driver 𝑖 has at time period 𝑝 

on day 𝑑 

# 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑤𝑑𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ The expected number of orders driver 𝑖 has at time period 

𝑝 on day of week 𝑤𝑑 

𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  The expected earnings per order 

𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑑𝑝  The subsidy per order offered by the platform at time 

period 𝑝 on day 𝑑 

𝜉𝑖𝑑𝑝  The unobserved demand and cost shocks for driver 𝑖 at 

time period 𝑝 on day 𝑑 

  

𝛼 The income sensitivity shared by all drivers 

𝑐1𝑖𝑤𝑑𝑝  The marginal cost for driver 𝑖 at time period 𝑝 on day of 

week 𝑤𝑑 

𝑐2 The cost parameter that captures the benefit from work 

flow 

𝑐3 The cost parameter that captures the benefit from work 

continuity 

𝑐4 The cost parameter that captures the work fatigue 

𝜮𝝃 The variance-covariance matrix for the distribution of the 

demand and cost shocks 𝜉𝑖𝑑𝑝 

 

Drivers decide their working hours by evaluating their gain from the expected income and working 

costs. We specify the driver’s utility 𝑢(𝒉𝒊𝒅) as following: 
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𝑢(𝒉𝒊𝒅) = 𝐺𝑎𝑖𝑛 (𝒉𝒊𝒅) − 𝐶𝑜𝑠𝑡𝑠 (𝒉𝒊𝒅),     (3) 

where 𝐺𝑎𝑖𝑛 (𝒉𝒊𝒅) and 𝐶𝑜𝑠𝑡𝑠 (𝒉𝒊𝒅) are associated with the expected income and costs conditional 

on working hours 𝒉𝒊𝒅  which consists of supply decision throughout the day, namely 𝒉𝒊𝒅 =

(ℎ𝑖𝑑1, ℎ𝑖𝑑2, ℎ𝑖𝑑3 ). Drivers thus choose the working hours 𝒉𝒊𝒅
∗  for the whole day that maximize their 

total utility: 

𝒉𝒊𝒅
∗ = argmax

𝒉𝒊𝒅

𝑢(𝒉𝒊𝒅).    (4) 

We consider two important features of drivers’ supply behavior when we specify the utility 

function below. First, drivers’ utility across different time periods may be correlated within a day. 

Such correlation can be caused by both observable factors and unobservable factors. For instance, 

for observable factors, working longer in the morning may inevitably influence drivers’ state to 

work in the afternoon either by increasing or decreasing their working costs. For unobservable 

factors, for example, road repairs, which we do not observe in our data, can cause a negative shock 

to drivers’ expected income and costs throughout the whole day. We account for the role of both 

observable and unobservable factors in drivers’ utility specification. 

Second, drivers may have heterogeneous expected income and working costs conditional on time. 

As shown in the descriptive evidence, drivers vary substantially in terms of when and how long 

they work. Such heterogeneity can be attributed to differences in both their expected income and 

working costs. To accommodate such differences, we compute the heterogeneous expected income 

at the driver level to reflect that drivers’ earnings can be dispersed even if they work in the same 

hour. Furthermore, we allow for the full heterogeneity in drivers’ costs at the individual level. 

However, such model specification leads to very challenging estimation because we have a very 

large set of parameters to estimate. To address this challenge, we propose a novel estimation 

method that allows us to recover individual cost parameters in a tractable way.  

4.2. The Gain Function 

First, we discuss drivers’ gain from expected income in the utility function 𝑢(𝒉𝒊𝒅). With working 

hour ℎ𝑖𝑑𝑝, driver 𝑖’s gain from the expected income in time period 𝑝 on day 𝑑 can be expressed as: 

𝐺𝑎𝑖𝑛𝑖𝑑𝑝(ℎ𝑖𝑑𝑝) = 𝛼 ∗ 𝐸(𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑑𝑝) ∗ ℎ𝑖𝑑𝑝 ,  (5) 

where 𝛼  denotes the income sensitivity shared among all drivers, indicating how changes in 

potential earnings influence their decisions to work additional hours. This parameter is crucial for 

modeling their responsiveness to varying hourly earnings. 𝐸(𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑑𝑝)  is the 

expected hourly earnings for the driver in time period 𝑝 on day 𝑑. 

We approximate drivers’ expected earning per hour using the following formula:  
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𝐸(𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑑𝑝) = # 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑤𝑑𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗ (𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑑𝑝 ) +

𝜉𝑖𝑑𝑝
𝑒 .    (6) 

In this equation, # 𝑂𝑟𝑑𝑒𝑟 Per Hour𝑖𝑤𝑑𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the average number of hourly trips undertaken 

by the driver 𝑖 per hour in period 𝑝 on day d that is on the day of week 𝑤𝑑. 𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑝𝑒𝑟 𝑂𝑟𝑑𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is the average earning from each trip. Due to the design of the platform, drivers do not know the 

destination of the trip before they pick up the rider. Therefore, it is very difficult for drivers to 

selectively choose orders. We therefore assume drivers have the same expectation regarding how 

much they can earn from each trip. See the discussion in the previous section how we construct 

these two variables. 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑑𝑝 is the actual subsidy provided by the platform in time period 𝑝 on 

day 𝑑. It is important to note that during the non-experimental period from January 1 to July 30, 

2022, no subsidies were provided, thus this variable is set to zero for that timeframe. Finally, 𝜉𝑖𝑑𝑝
𝑒  

is a stochastic term that captures demand fluctuations known to the driver beforehand but not 

observable to researchers. This term accounts for any additional, unanticipated variability in driver 

earnings. Importantly, 𝜉𝑖𝑑𝑝
𝑒  can be correlated across different time periods within a day. 

Driver 𝑖’s gain from the expected income on day 𝑑 can thus be specified as: 

𝐺𝑎𝑖𝑛𝑖𝑑(𝒉𝒊𝒅) = ∑ 𝛼 ∗ 𝐸(𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑑𝑝) ∗ ℎ𝑖𝑑𝑝

3

𝑝=1
 

= ∑ 𝛼 ∗ (# 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑤𝑑𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗ (𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑑𝑝) + 𝜉𝑖𝑑𝑝

𝑒 ) ∗ ℎ𝑖𝑑𝑝
3
𝑝=1 .  (7) 

 

4.3. The Cost Function 

We model drivers’ costs by considering several factors. First, we assume an individual-specific 

marginal cost of work, denoted as 𝑐1𝑖𝑤𝑑𝑝. This captures the "opportunity cost" of using time for 

other activities, such as working a full-time job. Note that the overall utility function is parametric, 

including both the gain and cost functions. However, we model 𝑐1𝑖𝑤𝑑𝑝 in a non-parametric way to 

capture the full heterogeneity of work behaviors across drivers. Specifically, we estimate the cost 

for each driver that varies across weekdays and weekends, 𝑤𝑑 , and across time periods, 𝑝 . 

Specifying such granular parameters for costs is necessary because we have shown that drivers 

differ from each other in terms of not only their overall tendency to work but also when and how 

long they choose to work across time periods. As a result, driver-specific and time-variant marginal 

costs allow us to rationalize such rich heterogeneity. This is also consistent with the reality of ride-

sharing platforms where drivers usually take orders as part-time work. Therefore, their preference 

for working is highly dependent on daily work and life schedules that vary substantially across 

individuals. 
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To account for unobserved and short-term factors affecting this cost, we further introduce a 

stochastic term, 𝜉𝑖𝑤𝑑𝑝
𝑐 , which is known to the driver but not to researchers. This term reflects 

individual, day, and time period-specific cost shocks. For example, the cost of driving may be 

higher in good weather because the driver might prefer to spend time with family or friends. This 

component can also be correlated across different time periods within a day. In short, the driver’s 

individual-specific marginal cost is represented by: 

(𝑐1𝑖𝑤𝑑𝑝 + 𝜉𝑖𝑤𝑑𝑝
𝑐 ) ∗ ℎ𝑖𝑑𝑝. 

The cost function further allows for psychological and physiological factors that may affect the 

work cost, including psychological flow, cost benefits from continuous work, and fatigue. These 

factors help us capture the interdependency between different time periods. Psychological flow 

(Norsworthy 2021) indicates that drivers are more likely to continue working if they are already 

in the mood. To capture this behavior, we calculate the cumulative working hours ∑ ℎ𝑖𝑑𝑝′𝑝′<𝑝  and 

use 𝑐2  to incorporate its impact on subsequent costs within the same day. Therefore, this 

component is captured by: 

𝑐2 ∗ ∑ ℎ𝑖𝑑𝑝′

𝑝′<𝑝

∗ ℎ𝑖𝑑𝑝 . 

Additionally, we use 𝑐3 to denote the cost benefits from continuous work, where drivers who have 

already been active in a previous period might save on commuting costs, encouraging more 

efficient work distribution and reducing downtime. That is, if driver 𝑖 works in the previous time 

period, i.e. 1{ℎ𝑖𝑑𝑝−1 > 0}=1, the cost of working will possibly be lower in the current period than 

the case when the driver does not work in the previous period. This is represented by: 

𝑐3 ∗ 1{ℎ𝑖𝑑𝑝−1 > 0} ∗ 1{ℎ𝑖𝑑𝑝 > 0}. 

That is, if the driver has worked in the previous period and continue to work in the current period, 

his/her cost will drop (assuming 𝑐3 is negative). 

Finally, we use 𝑐4  to capture the fatigue of the driver. This means that drivers will incur a penalty 

if their total working hours for the day, i.e. the sum of ℎ𝑖𝑑1, ℎ𝑖𝑑2, ℎ𝑖𝑑3, is too high We assume that 

this penalty is convex, meaning that the marginal cost increases as working hours accumulate. 

Specifically, we include the following components: 

𝑐4

2
∗ (ℎ𝑖𝑑1 + ℎ𝑖𝑑2 + ℎ𝑖𝑑3 )2. 

Therefore, the total costs for the driver 𝑖 on day 𝑑 can be expressed as: 
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𝐶𝑜𝑠𝑡𝑖𝑑(𝒉𝒊𝒅) = ∑ ((𝑐1𝑖𝑤𝑑𝑝 + 𝜉𝑖𝑤𝑑𝑝
𝑐 + 𝑐2 ∗ ∑ ℎ𝑖𝑑𝑝′𝑝′<𝑝 ) ∗ ℎ𝑖𝑑𝑝 + 𝑐3 ∗ 1{ℎ𝑖𝑑𝑝−1 > 0} ∗3

𝑝=1

1{ℎ𝑖𝑑𝑝 > 0}) +
𝑐4

2
∗ (ℎ𝑖𝑑1 + ℎ𝑖𝑑2 + ℎ𝑖𝑑3)2.   (8) 

4.4. Total Utility 

Combining drivers’ gain and costs, the utility for driver 𝑖 on day 𝑑 can be summarized as follows: 

𝑢(𝒉𝒊𝒅) = ∑ [(𝛼 ∗ # 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑤𝑑𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗ (𝐸𝑎𝑟𝑛𝑖𝑛𝑔 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑑𝑝 ) − 𝑐1𝑖𝑤𝑑𝑝 −3

𝑝=1

𝑐2 ∗ ∑ ℎ𝑖𝑑𝑝′𝑝′<𝑝 + 𝛼 ∗ 𝜉𝑖𝑑𝑝
𝑒 − 𝜉𝑖𝑑𝑝

𝑐 ) ∗ ℎ𝑖𝑑𝑝 − 𝑐3 ∗ 1{ℎ𝑖𝑑𝑝−1 > 0} ∗ 1{ℎ𝑖𝑑𝑝 > 0}] −
𝑐4

2
∗

(ℎ𝑖𝑤𝑑1 + ℎ𝑖𝑤𝑑2 + ℎ𝑖𝑤𝑑3 )2.    (9) 

We redefine 𝜉𝑖𝑑𝑝 = 𝛼 ∗ 𝜉𝑖𝑑𝑝
𝑒 − 𝜉𝑖𝑑𝑝

𝑐  to consider both unobserved demand and cost shocks that may 

affect specific to each driver. We assume 𝝃𝒊𝒅 =  (
𝜉𝑖𝑑1
𝜉𝑖𝑑2
𝜉𝑖𝑑3

)   follows a multivariate normal distribution 

with the CDF as 𝐹(0, 𝜮𝝃). 𝜮𝝃 is the 3*3 variance-covariance matrix that is specified as: 

𝜮𝝃 = [

𝜎11
2 𝑠21 𝑠31

𝑠21 𝜎22
2 𝑠32

𝑠31 𝑠32 𝜎33
2

].    (10) 

To further “smooth” the probability distribution across different combinations of work hours, 𝒉𝒊𝒅, 

we introduce  𝜀ℎ𝑖𝑑
 to the utility function: 

𝑈(𝒉𝒊𝒅) = 𝑢(𝒉𝒊𝒅) + 𝜀𝒉𝒊𝒅
 ,  (11) 

where 𝜀𝒉𝒊𝒅
 is independent across individuals and work hour choices 𝒉𝒊𝒅 = (ℎ𝑖𝑑1, ℎ𝑖𝑑2, ℎ𝑖𝑑3) (see 

details below) and it follows a Type-1 extreme value distribution.  

4.5. Likelihood Function  

Given the utility specification and the distribution for 𝜀𝒉𝒊𝒅
, we can write the probability for drivers’ 

supply choice 𝒉𝒊𝒅
∗  as: 

𝑃𝑖𝑑 (𝒉𝒊𝒅
∗ ) = ∫

𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅
∗ ;𝜉𝑖𝑑))

∑ 𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅 ;𝜉𝑖𝑑))𝒉𝒊𝒅

𝑓𝜉 (𝝃𝒊𝒅)𝑑𝝃𝒊𝒅  ,  (12) 

where 𝑓𝜉 (𝝃𝒊𝒅) is the PDF for 𝝃𝒊𝒅 . Note that 𝒉𝒊𝒅
∗  is the observed work hour choice of driver i on 

day d, which is a vector of three time periods. This indicates that each driver faces a total of 343 

potential work choice combinations daily, that is (0, 1, , 2, . . . ,6) × (0, 1, , 2, . . . ,6) ×

(0, 1, , 2, . . . ,6). The probability function is independent across days within the same person after 
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controlling for the individual marginal cost 𝑐1𝑖𝑤𝑑𝑝, based on the assumption that 𝜉’s and 𝜀’s are 

independent across days. We can then write the likelihood as follows: 

𝑙 = ∏ ∏ 𝑃𝑖𝑑 (𝒉𝒊𝒅
∗ )𝑑 .𝑖    (13) 

 

5. Model Estimate and Identification 

5.1. Simulated Maximum Likelihood Estimation 

Given that we do not have the closed-form expression for the choice probability, we opt for a 

simulated likelihood method. To simulate 𝝃𝒊𝒅
𝒔  , where 𝑠 = 1,2, . . . , 𝑁𝑆 , we use the Cholesky 

decomposition method by first decomposing the variance-covariance matrix Σ𝜉. That is, 

𝜮𝝃 = [

𝜎11
2 𝑠21 𝑠31

𝑠21 𝜎22
2 𝑠32

𝑠31 𝑠32 𝜎33
2

] = [
1 0 0

𝑆21 𝑆22 0
𝑆31 𝑆32 𝑆33

] [
1 𝑆21 𝑆31
0 𝑆22 𝑆32
0 0 𝑆33

]. (14) 

where parameters {S21, S22, S31, S32, S33} are what we actually estimate in the model estimation. 

We then draw NS samples of 𝝊𝒊𝒅
𝒔  from the standard normal distribution, and multiply 𝝊𝒊𝒅

𝒔  with the 

lower-triangular matrix on the right-side of equation (14), given {𝑆21, 𝑆22, 𝑆31, 𝑆32, 𝑆33}. This 

gives us 𝝃𝒊𝒅
𝒔 . Therefore, the probability can be rewritten as: 

𝑃𝑖𝑑 (𝒉𝒊𝒅
∗ ) =

1

𝑁𝑆
∑

exp(𝑢(𝒉𝒊𝒅
∗ ; 𝝃𝒊𝒅

𝒏𝒔))

∑ exp(𝑢(𝒉𝒊𝒅 ; 𝝃𝒊𝒅
𝒏𝒔))𝒉𝒊𝒅

𝑁𝑆
𝑛𝑠=1 . (15) 

Let 𝚯𝟏 = {𝛼, 𝑐2, 𝑐3, 𝑐4, Σ𝜉  } consist of all the common shared parameters and 𝚯𝟐 = {𝑐1𝑖𝑤𝑑𝑝; 𝑖 =

1, … , 𝑁}  represent each driver’s time period-specific costs. We can rewrite our log-likelihood 

function as: 

𝑚𝑎𝑥
𝜣𝟏,𝜣𝟐

𝑙𝑙 = 𝑚𝑎𝑥
𝜣𝟏,𝜣𝟐

∑ ∑ 𝑙𝑛 (
1

𝑁𝑆
∑

𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅
∗ ;𝝃𝒊𝒅

𝒏𝒔 ,𝜣𝟏,𝜣𝟐))

∑ 𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅 ;𝝃𝒊𝒅
𝒏𝒔,𝜣𝟏,𝜣𝟐 ))𝒉𝒊𝒅∈𝑯

𝑛𝑠 )𝑑𝑖 . (16) 

Although using the simulated likelihood method allows us to approximate the probability of each 

driver's work hour choices by integrating over the distribution of unobserved heterogeneity, the 

model's large number of parameters poses a computation challenge. The dimension of 𝚯𝟏  is 16 in 

total, whereas the dimension of  𝚯𝟐  is N*6 with N as the number of drivers, which is far larger 

than the dimension of 𝚯𝟏 . Note that, 𝚯𝟐  is associated with the number of drivers, which increases 

linearly with the number of drivers; however, 𝚯𝟏  does not. This characteristic makes the problem 

non-scalable. For instance, if we have a million drivers in a certain city, we will need to estimate 

over six million parameters in total. Thus, when estimating the model, we face the critical 
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challenge with the simulated maximum likelihood procedure. That is, when the dimensionality of 

𝚯𝟐  is large, the estimation time will be too long because we are searching over a very large space 

to optimize the objective function. 

To address these challenges, we propose a nested iteration procedure to manage the large 

dimensionality in the model estimation. This novel method is based on the observation that 

equation (16) can be rewritten as: 

𝑚𝑎𝑥
𝜣𝟏,𝜣𝟐

𝑙𝑙 = 𝑚𝑎𝑥
𝜣𝟏

∑ 𝑚𝑎𝑥
𝛩2𝑖

∑ 𝑙𝑛 (
1

𝑁𝑆
∑

𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅
∗ ;𝝃𝒊𝒅

𝒔 ,𝛩2𝑖 |𝜣𝟏))

∑ 𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅 ;𝝃𝒊𝒅
𝒔 ,𝛩2𝑖|𝜣𝟏 ))𝒉𝒊𝒅∈𝑯

𝑠 )𝑑𝑖 . (17) 

where Θ2𝑖 = {𝑐1𝑖𝑤𝑑𝑝}  is the cost estimates for driver 𝑖 . That is, conditional on 𝚯𝟏  , Θ2𝑖   can be 

obtained by maximizing the likelihood of the observed work hour choices of the driver across days. 

Note that the likelihood can be rewritten in this way because the likelihood functions across drivers 

are independent from each other given the shared parameters 𝚯𝟏 .4  

The nested iteration procedure can work because of equation (17). Details of the procedure are as 

follows: (1) At the outside of the estimation, we simulate 𝝊𝒊𝒅
𝒔  from standard normal distribution 

for every driver-day. (2) Given the trial of 𝜣𝟏
∗  , we compute 𝝃𝒊𝒅

𝒔  . We then obtain the estimate 

𝑐1𝑖,Weekday,𝑝̂  for driver 𝑖’s weekday period-specific cost by 

𝑚𝑎𝑥
𝑐1𝑖,𝑊𝑒𝑒𝑘𝑑𝑎𝑦,𝑝 

𝑙1𝑖 = ∑
1

𝑁𝑆
∑

𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅
∗ ; 𝝃𝒊𝒅

𝒔 ,𝑐1𝑖,𝑊𝑒𝑒𝑘𝑑𝑎𝑦,𝑝|𝜣𝟏
∗ ))

∑ 𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅
∗ ; 𝝃𝒊𝒅

𝒔 ,𝑐1𝑖,𝑊𝑒𝑒𝑘𝑑𝑎𝑦,𝑝|𝜣𝟏
∗  ))𝒉𝒊𝒅

𝑠𝑑∈{𝑤𝑒𝑒𝑘𝑑𝑎𝑦} .  (18) 

We can similarly obtain the likelihood function for the weekend 𝑙1′𝑖 and calcualte 𝑐1𝑖,Weekend,𝑝̂ . 

We repeat this process for all drivers. (3) Given the estimated 𝚯�̂�  , we can evaluate the full 

likelihood function: 

𝑙 = ∑ ∑ 𝑙𝑛 (
1

𝑁𝑆
∑

𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅
∗ ;𝝃𝒊𝒅

𝒔 ,𝜣𝟏
∗ ,𝜣�̂�))

∑ 𝑒𝑥𝑝(𝑢(𝒉𝒊𝒅
∗ ;𝝃𝒊𝒅

𝒔 ,𝜣𝟏
∗ ,𝜣�̂�))𝒉𝒊𝒅

𝑠 )𝑑𝑖 .  (19) 

Steps (2) and (3) describe the inner loop of the nested iteration procedure. Finally, (4) at the outer 

loop, we search over 𝚯𝟏  to maximize the log-likelihood. We repeat steps (2) and (3) each time 𝚯𝟏  

is updated at the outer loop. We can visualize our estimation steps as below. 

 

 
4 If Θ2𝑖  affects the likelihood function of another driver i’, the proposed estimation method will not work. This can happen when, 
for example, there are spillover or peer effects in drivers’ working choices. The choice of driver i’ can be a function of the choice 
of i in this case. 
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Figure 7. Nested Iteration Estimation 

 

Compared with the joint estimation of 𝚯𝟏  and 𝚯𝟐 , the key advantage of the proposed method is 

that we can separately estimate 𝚯𝟐  for each individual driver. Note that only the dimensionality of 

𝚯𝟐  increases with the number of drivers, and the estimation of 𝚯𝟐  in the inner loop is independent 

for each driver. This suggests that the computation burden of this procedure only increases linearly 

as the number of drivers grows. This will significantly reduce the time of model estimation. We 

can even decompose the estimation further by separating 𝚯𝟐  for weekdays and weekends within a 

driver. This is because while drivers’ utility is correlated across time periods within a day, it is 

uncorrelated across days. Since we specify 𝚯𝟐   for weekday 𝑐1𝑖,Weekday,𝑝  and weekend 

𝑐1𝑖,Weekend,𝑝, we can use the corresponding observations to separately estimate these parameters.  

For large platforms such as Uber or Lyft that hire millions of drivers, researchers have to estimate 

tens of millions of individual-level 𝚯𝟐  . Even though the computation burden in the model 

estimation is linear in the number of drivers, estimating so many cost parameters is still challenging. 

However, since the estimation of 𝚯𝟐  in the inner loop is independent for each driver, platforms can 

employ large-scale parallel programming to allocate the computation of 𝚯𝟐𝒊  for each driver. The 

model estimation will reduce proportionately with the number of processors platforms can allocate 

to the problem. Since the nested iteration procedure can continue to function well with larger 

parameter space, the model estimation problem is scalable.  

Our proposed method shares a similar nested iteration structure with Chan et al. (2014) and Chan 

et al. (2014). The key difference is that, while the referenced papers can recover 𝚯𝟐  conditional on 
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𝚯𝟏  in a closed form, the inner loop of our method does not have this property. Therefore, while 

they can use least squares regressions in the inner loop, our estimation has to rely on maximum 

likelihood. The advantage of our proposed method is that the procedure can be applied to general 

structural models that are typically non-linear (even conditional on 𝚯𝟏). 

5.2. Identification 

Our model includes drivers’ sensitivity to income 𝛼, cost parameters {𝑐1𝑖𝑤𝑑𝑝 , 𝑐2, 𝑐3, 𝑐4 }, and the 

variance-covariance matrix for the unobserved factors Σ𝜉 within a day. We use the experimental 

data to pin down 𝛼  from 𝑐1𝑖𝑤𝑑𝑝 . This is because, during the experiment, we exogenously 

manipulate the level of subsidies across time periods. As 𝑐1𝑖𝑤𝑑𝑝 remains constant, change of driver 

supply can inform us of the value of 𝛼. Given the identification of 𝛼, 𝑐1𝑖𝑤𝑑𝑝 can also be identified 

from a driver’s work choices across different time periods outside the experimental period.  

Note that, if the outcome is only discrete choice (e.g. work or not work in a time period), 𝛼 and 

𝑐1𝑖𝑤𝑑𝑝 cannot be both identified, as one of the parameters has to be normalized. However, although 

the likelihood function in our model follows a multinomial logit structure, the outcome variables 

are the number of hours (from 0 to 6) in a time period. Therefore, it should be treated as a multiple-

unit choice model, making both parameters identifiable. 

The identification of {𝑐2, 𝑐3, 𝑐4} is related to the general working behavior across all drivers. The 

identification of 𝑐2 comes from the relationship between previous cumulative working hours and 

subsequent working hours. If drivers work more when they have worked more in prior time periods, 

we will have a negative estimate for 𝑐2. That is, the momentum of working reduces the cost of 

continuing to work. Note that we have controlled the drivers’ average tendency to work using 

𝑐1𝑖𝑤𝑑𝑝. Similarly, the identification of 𝑐3 comes from the relationship between whether drivers 

work in the adjacent time period and the subsequent working hour. Finally, the identification of 𝑐4 

comes from the average tendency to choose specific working hours for the whole day. In our model, 

drivers can work for a minimum of 0 hours and a maximum of 18 hours. If we observe that drivers 

are more likely to work shorter hours than longer hours, we will obtain a positive estimate for 𝑐4. 

We capture the correlation of working hours across time periods within a day using 𝑐2 and 𝑐3. 

However, these two components are unlikely to control for all factors. After controlling for  𝑐2 and 

𝑐3, any remaining correlations will be reflected in the variance-covariance matrix Σ𝜉. For instance, 

suppose in the data we observe that if a driver drives more in the morning on a given day, they are 

also more likely to drive in the afternoon; conversely, if they drive less in the morning, they are 

also less likely to work in the afternoon. Then, the covariance of the two time periods will be 

positive. 
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5.3. Numerical Experiments 

To understand the performance of the proposed nested iteration method compared with the 

traditional joint estimation approach, we conduct simulation studies to compare the two methods. 

In these simulations, we assessed the performance and accuracy of our approach by simulating 

data for 20 drivers over 24 weeks. For each driver-day, we drew 100 random errors  𝜉𝑖𝑑
𝑠  from the 

multivariate normal distribution (NS = 100). We then estimated the results using various sets of 

starting values, including randomly generated values (ranging from 0 to 1) and fixed values of 1, 

2, and 3. We use two estimation methods: the proposed nested iteration method and traditional 

joint estimation. We conduct the estimation on the desktop with 64 GB RAM and a 12th Gen 

Intel(R) Core(TM) i9-12900KF 3.19 GHz processor.  We estimate a model in MATLAB 2022a. 

One advantage of the proposed nested iteration method is that we can use parallel programming 

for the inner loop, as the estimation for each driver is separable and independent conditional on 

the outer loop parameters. To leverage this advantage, we use 10 parallel CPU cores to estimate 

the model in the inner loop. 

We first show the recovery accuracy for the homogenous parameters {𝛼, 𝑐2, 𝑐3, 𝑐4 } in Table 4 by 

trying three different sets of model parameters. The results suggest that the nested iteration method 

consistently recovers the different true parameters with high accuracy. We further show the 

recovery of the individual parameters 𝑐1𝑖,weekday/end,𝑝 in Figure 8, using one trial as an example. 

Consistent with the results of homogenous parameters, we find that the proposed method can also 

identify the individual-level parameters accurately. Taken together, these results suggest that the 

nested iteration method can achieve high accuracy in parameter recovery, both for homogeneous 

and individual-specific parameters. 

 

Table 4. Recovery Test  

 Trial 1 Trial 2 Trial 3 

Parameter 
True 

Value 

Recovered 

Value 

True 

Value 

Recovered 

Value 

True 

Value 

Recovered 

Value 

Alpha 0.87 0.87 0.38 0.38 0.11 0.11 

C2 -0.46 -0.43 -0.96 -1.04 0.70 0.72 

C3 0.19 0.18 -0.72 -0.75 0.64 0.69 

C4 0.20 0.21 0.41 0.42 0.40 0.39 

Log-likelihood 

Function Value 
-12332 -9355 -6352 
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Figure 8. Recovery of Individual Cost Parameters 

 

Next, we show that the proposed method can achieve faster estimation speeds than the traditional 

joint estimation method. Specifically, we compared the estimation times for different numbers of 

simulated drivers. Using the same set of parameter values, we simulated scenarios with 10, 20, 30, 

40, and 50 drivers and compared the computational time required for each method. As shown in 

Table 5, while the traditional joint estimation method provided faster estimation times with fewer 

simulated drivers (i.e., 10 drivers), the computational efficiency of our proposed nested iteration 

method became apparent as the number of drivers increased. For example, with 50 drivers, the 

running time was significantly reduced from 18.05 hours with the traditional method to 9.87 hours 

with our proposed method. These findings illustrate that our nested iteration method not only 

maintains accuracy but also offers substantial computational advantages, especially as the dataset 

size grows. 

Note that this exercise involves only 50 drivers at the maximum. For most of the ride-sharing 

platforms, the number will be tens or hundreds of thousands larger. The advantage of the proposed 

method will be much bigger in those cases. Furthermore, we restrict the number of CPU cores to 

ten for all studies. Big platforms can employ more processors in the parallel programming, which 

can vastly reduce the estimation time. 
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Table 5. The Estimation Time 

  Time (Hours) 

N Nested Iteration Joint 

10 2.04 0.57 

20 2.75 3.00 

30 7.62 7.56 

40 6.41 9.34 

50 9.87 18.05 

 

 

6. Main Results 

6.1. Estimation Results 

Based on our dataset, we estimate the structural model using our proposed method. For the 

empirical application, since our panel covers a relatively long period, we include time-fixed effects 

in the model. Specifically, we adapt the original linear cost part (𝑐1𝑖𝑤𝑑𝑝 + 𝑐2 ∗ ∑ ℎ𝑖𝑑𝑝′𝑝′<𝑝 ) ∗ ℎ𝑖𝑑𝑝 

to (𝑐1𝑖𝑤𝑑𝑝 + 𝑐2 ∗ ∑ ℎ𝑖𝑑𝑝′𝑝′<𝑝 + 𝑀𝑜𝑛𝑡ℎ𝑑) ∗ ℎ𝑖𝑑𝑝 where 𝑀𝑜𝑛𝑡ℎ𝑑 denotes in which month day 𝑑 is. 

We use the month of the field experiment as the baseline. The results are shown in Table 6. 

First, we find that the income sensitivity parameter 𝛼  is significantly positive, suggesting that 

drivers are more likely to work and work longer when their expected income increases. This is 

consistent with our descriptive evidence. However, the small value also suggests that drivers are 

not very income-sensitive, with an average income elasticity of only 0.008, calculated based on 

our data and the model estimates. Therefore, providing a uniform subsidy to every driver may be 

inefficient, as we will demonstrate in the counterfactual analysis. 

Second, interestingly, we find that the estimate for 𝑐2 is negative, suggesting that when drivers’ 

previous cumulative working hours are longer, their working costs are smaller. This aligns with 

the psychological concept of flow (Norsworthy 2021), where individuals become more absorbed 

and engaged in an activity, making them more likely to continue it. For instance, a driver who has 

been driving for several hours may find it easier and more rewarding to keep driving rather than 

stop and start again later. This continuous engagement can lead to a more seamless and enjoyable 

work experience, reducing the perceived effort required to maintain the activity.  
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Table 6. Structural Model Estimates 

 Coefficient SE 

𝜶 0.06*** 0.009 

𝒄𝟐 -0.45*** 0.021 

𝒄𝟑 -0.07*** 0.007 

𝒄𝟒 0.13*** 0.006 

𝑺𝟐𝟏 1.27*** 0.020 

𝑺𝟐𝟐 0.53*** 0.031 

𝑺𝟑𝟏 0.78*** 0.033 

𝑺𝟑𝟐 0.73*** 0.036 

𝑺𝟑𝟑 -0.01 0.023 

Jan 2022 0.06** 0.038 

Feb 2022 0.02 0.033 

Mar 2022 -0.26*** 0.033 

Apr 2022 -0.32*** 0.033 

May 2022 -0.28*** 0.035 

June 2022 -0.24*** 0.033 

July 2022 -0.20*** 0.033 

 

Similarly, the estimate for 𝑐3 is also negative. This suggests that when drivers work in the prior 

adjacent time period, they are more likely to work in the subsequent time period. Since we 

operationalize this prior working state as a binary variable, it captures the starting cost. For instance, 

when drivers start working on the platform, they may need to physically set up their cars to take 

riders and adjust their phones to interact with the platform's dispatching system. All these factors 

contribute to an initial starting cost, which can be avoided if drivers continue their work. Note that 

the difference between 𝑐2 and 𝑐3 is that 𝑐2 captures the cumulative working hours in all prior time 

periods, whereas 𝑐3 only reflects the working status in the closest time periods. It is likely that 
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drivers may have the same cumulative working hours but different working statuses in prior time 

periods. 

In contrast, we find the estimate for 𝑐4, which measures the fatigue of the drivers, to be positive. 

A key feature in 𝑐4 is that it suggests that drivers’ costs are convex in working hours such that the 

marginal cost is increasing. It is important to note that while 𝑐2 suggests a momentum effect such 

that higher cumulative working hours result in lower working costs, this momentum effect is linear. 

In comparison, 𝑐4 is quadratic in total working hours. Taken together, this suggests that when the 

total working hours are not large, the momentum effect may be influential in shaping drivers’ 

supply decisions. However, when the total working hours are large, the convex costs may play a 

more dominant role. 

Apart from the costs, we also estimate the variance-covariance matrix for the unobserved factors, 

using Cholesky decomposition with {S21, S22, S31, S32, S33}. When we calculate the correlation 

matrix based on this, we get the following results: 

Σ𝜉 = [
1 0.92 0.73

0.92 1 0.94
0.73 0.94 1

] 

These results align with our expectations that periods closer together have higher correlations  and 

vice versa for periods further apart. For example, the correlation between morning and afternoon 

is high at 0.92, whereas the correlation between morning and night is lower at 0.73. Still, the high 

correlations between time slots suggests that there might be some unobserved factors that influence 

a driver's behavior throughout the day. For instance, if a driver works late with their regular job 

the previous night, they may have a very high cost of working throughout the day. This correlation 

pattern helps us understand how such unobserved factors can have a lingering effect throughout 

the day, influencing the driver's willingness and ability to work. 

Finally, the month fixed effects also align with our expectations. We set the experiment month as 

the baseline. During the winter months (January and February), drivers tend to have higher costs, 

likely due to increased difficulties in cold weather. As the weather starts to warm up, the costs for 

drivers decrease, as seen in the lower costs from March to July. 

6.2. Understanding Individual-Level Costs 

An important feature of our model is that we estimate individual driver-level costs for different 

time periods. It is important to note that some drivers have never worked during certain time 

periods. For these drivers, we lack data to estimate their costs directly. Consequently, we estimated 

their costs to be the highest among all drivers who worked during that time period. This serves as 

the lower bound for their costs.  



   

 

33 

 

We first show the distribution of these costs for each time period in Figure 9, with the costs of 

drivers who have never worked during the time slot highlighted in red. 

 

Figure 9. Estimated Individual Cost Distribution 

The cost distribution for all drivers in each time period generally follows a normal distribution 

shape. For a very small number of drivers with negative costs, this implies that working during 

that period provides them with additional utility beyond their earnings, motivating them to work 

regardless of the financial incentive. This could be due to various factors such as personal 

satisfaction, social interactions, or other non-monetary benefits they derive from working. 

However, the negative costs do not mean that drivers work as much as they can. This is because 

drivers’ total costs also contain a quadratic term, which prevents them from working very long 

hours. 

Apart from the cost heterogeneity across drivers, we are able to examine the cost correlation within 

each driver because we have six cost estimates for each driver (i.e., weekday 

morning/afternoon/night and weekend morning/afternoon/night). Such correlation patterns are 

informative of the temporal dynamics of drivers’ costs. We show the correlation among these six 

dimensions in Table 7. 

The correlation patterns show the high face validity of our cost estimates. We generally observe a 

higher correlation between time periods that are adjacent. For instance, within weekdays or 

weekends, the cost correlation between mornings and afternoons is higher than between mornings 

and nights. Across weekdays and weekends, the cost correlation between mornings and mornings 

is higher than between mornings and afternoons. This is likely due to the fact that drivers may be 

more likely to have similar offline arrangements in adjacent time periods than in distant time 

periods. For instance, if they have a regular job in the morning, they are more likely to work the 
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same job in the afternoon than at night. Similarly, if drivers have an exercise routine on weekday 

mornings, they may be more likely to have a similar routine on weekend mornings than on 

weekend afternoons. Such behavior consistency outside the ride-sharing platforms may result in 

the correlation patterns we observe. 

 

Table 7. Individual Cost Correlation 

 Weekday 

Morning 

Weekday 

Afternoon 

Weekday 

Night 

Weekend 

Morning 

Weekend 

Afternoon 

Weekend 

Night 

Weekday Morning 1      

Weekday Afternoon 0.80 1     

Weekday Night 0.70 0.74 1    

Weekend Morning 0.67 0.59 0.53 1   

Weekend Afternoon 0.52 0.69 0.54 0.83 1  

Weekend Night 0.45 0.52 0.61 0.79 0.84 1 

 

Given the high degree of cost differences between drivers and correlation within drivers, it is 

possible for us to classify drivers into different categories based on distinctive patterns. To 

understand this issue, we conducted a cluster analysis to determine whether drivers exhibit similar 

behaviors. In this analysis, we compared clustering results for group sizes ranging from 1 to 7 and 

found that the 6-group model provided the most accurate segmentation. The average costs for 

drivers in different time periods are shown in Table 8, which represents the weekday cost clustering 

result. We use this as an example, as the weekend distribution is very similar. 

The table reveals distinct patterns among the clusters. Group 6 consists of 5% of drivers who never 

worked during weekdays, exhibiting the highest costs across all time periods. These drivers are 

less willing to work unless they receive higher compensation. In contrast, Group 5 includes the 

most active drivers with the lowest costs, suggesting a greater willingness to work under current 

compensation rates. 

Group 1 is characterized by late workers, who experience the lowest costs at night compared to 

the morning and afternoon, implying their reservation wage is met more easily in the evening. 

Conversely, Group 4 comprises morning workers, showing the lowest costs in the morning relative 

to other periods. Groups 2 and 3 display similar cost patterns throughout the day, indicating 

indifference to the time of day. However, Group 3 is more active than Group 2, as evidenced by 

their lower costs. 
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Table 8. Individual Cost Clustering (Weekday) 

Cluster Morning Afternoon Night Percentage of Drives 

1 3.62 2.69 2.06 11% 

2 1.77 2.16 1.80 32% 

3 0.75 1.09 0.80 33% 

4 1.42 1.99 3.96 4% 

5 -0.26 -0.31 -0.02 15% 

6 5.20 4.26 5.47 5% 

 

7. Counterfactual Analysis 

Similar to the flexibility on the supply side of ride-sharing platforms, the demand side is also 

characterized by significant fluctuations. When facing a sudden increase in rider demand, the 

platform faces the challenge of motivating drivers to work. When demand increases without a 

corresponding supply boost, high cancellation rates become a concern for the platform. High 

cancellation rates cause short-term revenue loss and lead to rider churn due to long waiting times 

and unsatisfactory experiences. Therefore, incentivizing drivers’ supply to meet riders’ demand is 

critical for platform growth and sustainability. 

One popular strategy for ride-sharing platforms is to provide subsidies to motivate drivers’ supply. 

For instance, Lyft provides a healthcare subsidy for drivers in California with specific working 

hours.5 For drivers who average between 15 and 25 hours per week of booked time, Lyft will make 

50% of the average Affordable Care Act (ACA) contribution for the driver. If drivers average 

above 25 hours, Lyft's contribution increases to 100%. As another example, Uber offers its drivers 

the Quest program based on how much a driver can make. When drivers complete a certain amount 

of earnings within a period of time, Uber offers monetary rewards to the driver.6 Note that none of 

these subsidies are individually customized, as they are offered to all drivers. Furthermore, these 

subsidies can incur significant financial costs for platforms, while the effectiveness of stimulating 

drivers to work more is questionable. 

 
5 https://help.lyft.com/hc/en-us/all/articles/360061623553-Healthcare-subsidy  

 
6 https://therideshareguy.com/the-best-strategies-and-hacks-for-uber-quest/, 
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html 

https://help.lyft.com/hc/en-us/all/articles/360061623553-Healthcare-subsidy
https://therideshareguy.com/the-best-strategies-and-hacks-for-uber-quest/
https://www.nytimes.com/interactive/2017/04/02/technology/uber-drivers-psychological-tricks.html
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To investigate whether the focal platform can offer an effective subsidization plan that can 

incentivize drivers’ work supply in a cost-effective manner, we consider a hypothetical scenario 

where rider demand in different time periods throughout a day exogenously increases by 5%. We 

first create a base case to see how drivers' working hours and orders taken would change regarding 

the demand increase without subsidies. We then consider two counterfactual policies—time-based 

non-targeting subsidization and individual-based targeting subsidization—and compare their 

performance and cost to the platform. 

7.1. Base Case: No Subsidy Offers 

Driver supply is influenced by demand, as higher demand naturally increases drivers’ actual 

income. This increase in actual income will also be reflected in drivers’ expected income, leading 

to an increase in their working hours. However, the impact can vary among drivers. In extreme 

cases, if a driver is already fully occupied, the increase in demand will likely not affect their actual 

and expected income. 

We consider two extreme cases in all counterfactual scenarios: the most ideal and worst case. For 

the most ideal scenario, we first assume that the change in drivers’ expected income mirrors the 

change in their actual income, i.e., drivers have rational expectations. We then impose the 

restriction that increased demand will not affect drivers’ hourly orders if their current number of 

orders is 1.2 or above. This assumption is based on the observation that, on average, it takes about 

30 minutes for a driver to complete an order, from assignment to drop-off. Additionally, 1.2 orders 

per hour represent the top 1 percentile of hourly orders among drivers. Thus, we assume that 

drivers already operating at this level will not see an increase in their hourly orders , and their 

expected income will remain unchanged. The remaining drivers' hourly orders will be adjusted 

accordingly, capped at 1.2. Additionally, we assume that the actual hourly orders taken align with 

the expected hourly order change, which is increased by 5%. 

In the worst-case scenario, we consider the possibility that drivers' expected income does not 

change despite the increase in demand. This scenario accounts for potential friction in matching 

riders and drivers, which may prevent the full conversion of increased demand into fulfilled orders. 

Therefore, the expected income of drivers remains unchanged even with a 5% increase in demand, 

and there is no change in the actual hourly number of orders taken. This approach allows us to 

evaluate the potential range of outcomes and better understand how different levels of demand 

realization impact driver behavior and platform performance. 

Table 9 represents the benchmark scenario where no subsidy is offered, illustrating how supply 

would change in the most ideal case where the number of orders fully reflects the 5% increase in 

demand. We separate the analysis for weekdays and weekends. Even in this ideal scenario, the 
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increase in working time is very small, at just 0.035%. Consequently, the total number of orders 

drivers take cannot fulfill the increased demand, achieving only around a 4% increase. The demand 

fulfillment gap is largely because the 1% drivers do not incorporate the demand increase into their 

expectation and they account for a significant portion of orders on the platform (20%). In addition, 

this small increase in working time is due to drivers' low-income sensitivity. The results suggest 

that to fulfill the total demand increase without generating additional costs for the riders, the 

platform needs to offer subsidies. Otherwise, roughly 20% of the increased orders will remain 

unfulfilled, potentially leading to negative consequences, as previously discussed.7 

In the worst case, if there is no increase in both the expected and actual hourly number of orders, 

the working time of all drivers will remain unchanged, and there will be a 100% revenue loss due 

to the lack of a supply of drivers. In reality, the revenue loss of the platform should be between 

20% and 100%. 

 

Table 9. Base Case: Order and Work Time Change 

 Expected Hourly Order Increase by 5% 

 Order Increase Work Time Increase 

Weekday 4.15% 0.034% 

Weekend 3.95% 0.037% 

 

7.2. Policy 1: Time-Based Non-Targeting Subsidization 

We examine the effects of the time-based non-targeting subsidization strategy. This strategy 

involves offering uniform subsidies to all drivers for every order completed in a time period and 

letting drivers decide whether to increase the working time during the period, which is similar to 

second-degree price discrimination. We assume that the subsidy is provided at integer levels, 

ranging from $0 to $98. By design, this subsidy structure means the platform will lose some profit 

because it will also subsidize orders drivers would have taken without the subsidy. However, the 

benefit is that the subsidy is provided equally to all drivers, avoiding discrimination.  

 
7 The increase in orders is larger than the increase in working hours because our model measures supply by the hour. The number  
of orders is calculated by multiplying the supply hours by the expected hourly orders. Therefore, even if the supply hours do  not 

change, an increase in the expected hourly orders results in a change in the total number of orders taken.  

8 The platform would already incur a loss when the subsidy exceeds $6; therefore, we assume the subsidy is at most $9. Note that 

$6 is just a rough number, not the exact number, to avoid revealing sensitive information about the platform.  
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We first examine cases when the demand increase occurs in only one period of the day. We 

compare the results for two scenarios: the worst-case scenario, where 0% of the demand increase 

is reflected in drivers' actual and expected change of orders, and the most ideal case, where the 

demand increase is fully reflected in the order changes. We compute the least-cost subsidy level in 

each time period under the constraint that there is at least a 5% increase in the orders drivers will 

take, matching the 5% increase to match the demand increase. Table 10 reports the results. 

The first observation is that the increase in orders taken and working time during the subsidized 

period negatively affects the rest of the periods, as seen in the "order taken change" and "working 

time change" sections of the table. This indicates that drivers spend more time working during the 

subsidized period, sacrificing their working time in other periods. We also noticed that the 

afternoon generally results in higher subsidy costs, around 16% and 8% for the most ideal and 

worst case scenarios, respectively, compared to the morning and night, which are around 10% and 

5% for the most ideal and worst case scenarios. This is because there tend to be more orders in the 

afternoon. To incentivize drivers to work more during the afternoon, the platform would have to 

subsidize all the previous orders, resulting in higher costs. 

Another interesting observation is that in the most ideal scenario, for three time periods—weekday 

morning, weekday night, and weekend morning—the platform does not need to provide any 

subsidies to the drivers. This is because demand has been low during these periods, and no drivers 

working during these time periods exceed 1.2 orders per hour, even with a 5% increase. That said, 

every driver's expected hourly order is fully increased by 5%. Therefore, even though there is no 

subsidy to incentivize the drivers, i.e., with no working time change, the orders taken still meet the 

5% increase. 

We then examine how the non-targeting subsidy would change driver performance if the increase 

in demand occurs throughout the entire day instead of just one period. Using the same criteria—

ensuring the lowest subsidy that can fulfill the demand in each period by at least 5%—we observe 

that the subsidy generates a profit loss ranging from 14% to 47% compared to no subsidies (see 

Table 11). Additionally, the platform tends to offer the highest subsidy in the morning to balance 

the increased demand. This strategy is likely due to the need to incentivize drivers early in the day 

to ensure adequate supply, which then influences their availability and work patterns for the rest 

of the day. 

7.3. Policy 2: Individual-Based Targeting Subsidization 

We then examine the effects of individual-based targeting subsidies, i.e. offering individually 

customized subsidies to each driver during each time period, and their costs to the platform. To 

conduct individual-based targeting, we use linear programming to optimize driver-specific 
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subsidies. Linear programming is suitable for this purpose because the subsidies are designed at 

the individual level, while the total supply constraint is applied at the aggregate level. Linear 

programming allows us to effectively search for the optimal combination of individual subsidies 

while ensuring the aggregate constraint is met. 

Let 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖𝑝 be the subsidy provided to driver 𝑖 at time period 𝑝, # 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the 

expected number of orders per hour after the adjustment, and ℎ𝑖𝑝(𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖𝑝) be the working 

hours supplied by driver 𝑖 at time period 𝑝, which depends on the subsidy offered. The exact 

dependency is based on the structural model we have estimated. We assume that the platform 

aims to maximize the revenue it receives from the orders. Therefore, we have the following 

constrained optimization problem: 

max
𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖𝑝

∑ ∑ # 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∗ (𝑃𝑟𝑜𝑓𝑖𝑡 𝑃𝑒𝑟 𝑂𝑟𝑑𝑒𝑟 − 𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖𝑝) ∗ ℎ𝑖𝑝(𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖𝑝 )

𝑝𝑖
, 

Subject to: 

 ∑ ∑ ℎ𝑖𝑝(𝑆𝑢𝑏𝑠𝑖𝑑𝑦𝑖𝑝) ∗ # 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑝𝑖 ≥ ∑ ∑ ℎ𝑖𝑝(0) ∗ # 𝑂𝑟𝑑𝑒𝑟 𝑃𝑒𝑟 𝐻𝑜𝑢𝑟𝑖𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ 1.05𝑝𝑖 ,  

(20) 

where ℎ𝑖𝑝(0) is drivers’ supply hour without any subsidy. The optimization constraint is that the 

total supply hours must increase by at least 5%. Consistent with managerial practice on the 

platform, the optimization constraint is that the total supply hours must increase by at least 5%. 

We also assume that the subsidy is provided at integer levels, ranging from $0 to $9. 

Table 12 presents the results showing how individual-based targeting subsidization can encourage 

drivers to work and meet a 5% demand increase during a certain period. Similar to the non-targeted 

case, in the most ideal scenario, weekday morning, weekday night, and weekend morning do not 

require any subsidy because the natural increase in orders is sufficient to cover the demand increase.  

However, for the remaining periods, in both the worst and most ideal cases, the overall subsidy 

cost is reduced by at least nearly 50% compared to the non-targeting case. This significant 

reduction suggests that the targeting method is highly effective in minimizing subsidy costs while 

still meeting the increased demand. 

We also compare the performance of the targeted approach with non-targeted approaches when 

demand increases by 5% for each period throughout the entire day. As shown in Table 13, the 

subsidization cost in the targeted approach is 51% to 83% lower than in the non-targeted approach. 

Furthermore, the platform can achieve 79% to 98% of the profit level it would have without 

providing any subsidies.  
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To understand how the targeting approach distributes subsidies, we further analyze the breakdown 

of each subsidy level for every period. Using weekdays as an example (weekends exhibit very 

similar features), Tables 14 and 15 reveal that the targeting subsidy approach tends to assign 

subsidies to a relatively small portion of drivers, ranging from 25% to 2%, depending on the 

scenario and time period. 

For the worst-case scenario with a 0% increase in expected orders, the targeting approach tends to 

provide more subsidies to drivers with the highest hourly orders and lower individual period costs. 

This strategy aims to maximize the immediate impact by encouraging already active and efficient 

drivers to work more. Conversely, in the most ideal scenario where there is a full 5% increase in 

expected orders, the algorithm targets drivers with lower hourly expected orders and higher 

individual period costs. This is because, in the most ideal scenario, the majority of the increased 

orders come from active drivers. Therefore, the algorithm focuses on incentivizing less  active 

drivers to come online and work, thus balancing the supply more effectively across all drivers.  

This differential approach ensures that the subsidies are utilized in the most cost-effective manner, 

optimizing the supply to meet the increased demand. By strategically targeting drivers based on 

their efficiency and activity levels, the platform can achieve a higher level of service with 

significantly lower subsidization costs. 
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 Table 10. Policy 1- Time-Based Non-Targeting Subsidization: One Time Period Subsidy 

 

 

 

 

 

 

  Subsidy Order Taken Change Working Time Change Subsidy 

Cost 

Rate 
  Morning Afternoon Night Morning Afternoon Night Morning Afternoon Night 

0% Expected Order Increases 

Weekday 

Morning 3 0 0 5.4% -0.4% -0.5% 2.2% -0.2% -0.1% 10.5% 

Afternoon 0 2 0 -0.5% 5.0% -0.4% -0.2% 2.3% -0.2% 16.9% 

Night 0 0 3 -0.6% -0.4% 6.5% -0.2% 2.6% -0.6% 12.0% 

Weekend 

Morning 4 0 0 5.8% -0.3% -0.5% 2.6% -0.1% -0.2% 10.1% 

Afternoon 0 2 0 -0.8% 6.1% -0.5% -0.3% 2.6% -0.2% 15.9% 

Night 0 0 2 -0.8% -0.4% 6.1% -0.3% -0.2% 2.7% 11.1% 

5% Expected Order Increases 

Weekday 

Morning 0 0 0 5.1% -0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 

Afternoon 0 1 0 -0.3% 6.0% -0.3% -0.1% 1.2% -0.1% 8.5% 

Night 0 0 0 0.0% -0.1% 5.1% 0.0% 0.0% 0.0% 0.0% 

Weekend 

Morning 0 0 0 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Afternoon 0 1 0 -0.4% 6.6% -0.3% -0.2% 1.4% -0.1% 8.0% 

Night 0 0 1 -0.4% -0.2% 7.6% -0.2% -0.1% 1.5% 5.6% 
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Table 11. Policy 1- Time-Based Non-Targeting Subsidization: Full Day Subsidy 

 Subsidy Order Increase Working Time increase  
Subsidy 

Cost Rate 

Profit Lose 

Comparing to 

No Subsidy 
 Morning Afternoon  Night Morning Afternoon Night Morning Afternoon Night 

0% Expected Order Increases 

Weekday 4 3 3 5.8% 6.7% 5.1% 2.4% 3.2% 2.1% 50.5% -46.4% 

Weekend 5 3 3 5.5% 8.0% 7.5% 2.5% 3.5% 3.4% 49.1% -47.3% 

5% Expected Order Increases 

Weekday 1 1 1 6.5% 5.7% 7.0% 0.6% 1.2% 0.8% 15.4% -13.7% 

Weekend 1 1 1 6.0% 6.3% 7.1% 0.4% 1.2% 1.3% 15.4% -13.3% 
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Table 12. Policy 2-Individual-Based Targeting Subsidization: One Time Period Subsidy 

 

 

 

 

 

 

  Subsidy Order Taken Change Working Time Change Subsidy 

Cost 

Rate 
  Morning Afternoon Night Morning Afternoon Night Morning Afternoon Night 

0% Expected Order Increases 

Weekday 

Morning 2.4 0 0 5.0% -0.3% -0.5% 1.2% -0.1% -0.1% 5.4% 

Afternoon 0 2.3 0 -0.5% 5.0% -0.5% -0.1% 1.5% -0.1% 10.0% 

Night 0 0 2.2 -0.4% -0.2% 5.0% -0.1% -0.1% 1.1% 5.2% 

Weekend 

Morning 3.4 0 0 5.0% -0.3% -0.4% 1.4% -0.1% -0.1% 5.0% 

Afternoon 0 2.3 0 -0.5% 0.1% -0.5% -0.1% 1.2% 0.1% 7.9% 

Night 0 0 1.7 -0.5% -0.3% 5.0% -0.1% -0.1% 1.3% 5.0% 

5% Expected Order Increases 

Weekday 

Morning 0 0 0 5.1% -0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 

Afternoon 0 4.0 0 -0.2% 5.0% -0.2% 0.0% 0.4% 0.0% 2.6% 

Night 0 0 0 0.0% -0.1% 5.1% 0.0% 0.0% 0.0% 0.0% 

Weekend 

Morning 0 0 0 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Afternoon 0 2.5 0 -0.2% 5.0% 0.0% 0.0% 0.4% 0.0% 2.1% 

Night 0 0 1.0 -0.1% 0.0% 5.0% -0.1% 0.0% 0.3% 0.5% 
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Table 13. Policy 2-Individual-Based Targeting Subsidization: Full Day Subsidy 

 Subsidy Order Increase Working Time increase  
Subsidy 

Cost Rate 

Profit Lose 

Comparing to 

No Subsidy 
 Morning Afternoon  Night Morning Afternoon Night Morning Afternoon Night 

0% Expected Order Increases 

Weekday 2.8 2.8 3.3 5.0% 5.0% 5.0% 1.3% 1.6% 1.1% 24.4% -20.6% 

Weekend 2.2 2.2 2.1 5.0% 5.0% 5.0% 1.6% 1.2% 1.2% 20.9% -16.9% 

5% Expected Order Increases 

Weekday 2.4 3.3 1.7 5.0% 5.0% 5.0% 0.0% 0.0% 0.0% 2.7% -1.9% 

Weekend 1.3 1.7 1.1 5.0% 5.0% 5.0% 0.0% 0.0% 0.0% 2.9% -1.9% 

 



   

 

45 

 

Table 14. Policy 2-Subsidy Breakdown (Weekday): Full Day Subsidy with 0% Expected Order Increase  

 Morning Afternoon Night 

Subsidy 
% 

Drivers 

Avg 

Hourly 

Order 

Avg 
Individual 

Period 
Cost 

% to 
Total 
Order 

Change 

% to 
Total 

Working 

Time 
Change 

% 
Drivers 

Avg 

Hourly 

Order 

Avg 
Individual 

Period 
Cost 

% to 
Total 
Order 

Change 

% to 
Total 

Working 

Time 
Change 

% 
Drivers 

Avg 

Hourly 

Order 

Avg 
Individual 

Period 
Cost 

% to 
Total 
Order 

Change 

% to 
Total 

Working 

Time 
Change 

0 75% 0.05 1.2 -1.0% 0.3% 92% 0.15 1.6 -4.6% -1.1% 89% 0.14 1.3 -8.2% -7.9% 

1 10% 0.07 2.1 2.0% 4.9% 2% 0.27 2.5 1.8% 2.3% 5% 0.02 3.3 0.0% 0.5% 

2 5% 0.15 2.9 10.4% 11.1% 2% 0.96 0.7 16.4% 17.8% 1% 0.46 2.8 3.4% 4.6% 

3 3% 0.23 1.8 9.0% 11.0% 2% 0.95 0.2 23.0% 29.2% 2% 0.37 3.0 16.1% 15.3% 

4 2% 0.28 1.8 12.7% 14.9% 0% NA 1% 0.00 5.5 0.0% 0.0% 

5 2% 0.13 3.0 6.4% 9.1% 0% NA 0% NA 

6 2% 0.04 4.8 0.0% 0.0% 1% 1.29 0.1 24.4% 22.7% 1% 0.20 5.5 0.0% 0.0% 

7 0% NA 0% NA 1% 0.01 5.5 0.0% 0.0% 

8 0% NA 0% NA 1% 1.14 0.5 52.6% 52.0% 

9 2% 0.44 1.8 60.5% 48.6% 1% 1.57 1.1 38.9% 29.2% 1% 1.24 0.3 36.1% 35.3% 
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Table 15. Policy 2-Subsidy Breakdown (Weekday): Full Day Subsidy with 5% Expected Order Increase  

 Morning Afternoon Night 

Subsidy 
% 

Drivers 

Avg 

Hourly 

Order 

Avg 
Individual 

Period 
Cost 

% to 
Total 
Order 

Change 

% to 
Total 

Working 

Time 
Change 

% 
Drivers 

Avg 

Hourly 

Order 

Avg 
Individual 

Period 
Cost 

% to 
Total 
Order 

Change 

% to 
Total 

Working 

Time 
Change 

% 
Drivers 

Avg 

Hourly 

Order 

Avg 
Individual 

Period 
Cost 

% to 
Total 
Order 

Change 

% to 
Total 

Working 

Time 
Change 

0 87% 0.08 1.2 94.8% 11.9% 98% 0.19 1.6 66.6% 12.7% 96% 0.16 1.4 97.9% 65.0% 

1 7% 0.05 2.9 3.5% 53.6% 1% 0.07 3.2 0.0% 0.2% 2% 0.16 3.2 2.0% 28.6% 

2 3% 0.05 3.8 1.4% 28.2% 1% 0.59 2.0 1.1% 4.9% 1% 0.20 5.5 0.0% 0.3% 

3 1% 0.22 2.7 0.3% 5.6% 0% NA 1% 0.08 2.7 0.1% 6.1% 

4 0% NA 0% NA 0% NA 

5 2% 0.04 4.6 0.0% 0.7% 0% NA 0% NA 

6 1% 0.03 3.9 0.0% 0.0% 0% NA 0% NA 

7 0% NA 1% 1.57 1.08 32.2% 82.1% 0% NA 

8 0% NA 0% NA 0% NA 

9 1% 0.06 4.7 0.0% -0.1% 0% NA 0% NA 
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8. Conclusion 

Ride-sharing platforms have revolutionized the matching of drivers and riders, greatly improving 

the efficiency of the taxi industry. While these platforms provide significant benefits to both drivers 

and riders, they also face the critical challenge of motivating driver supply and ensuring a 

satisfactory rider experience. This challenge arises from the fact that drivers have complete 

flexibility over their work schedules. Since the platform cannot compel drivers to be at specific 

locations and times, this flexibility can undermine the goal of seamlessly transporting passengers 

whenever and wherever needed. 

To tackle this challenge, our study aims to understand the underlying factors that influence drivers’ 

supply behavior and to shed light on how platforms can design effective subsidy strategies to 

motivate drivers and meet riders’ demand. To achieve this goal, we built a structural model that 

accounts for the heterogeneous costs and income sensitivities of drivers. A unique feature of our 

model is that it allows the working cost to vary for each driver. This rich heterogeneity is valuable 

for rationalizing drivers’ idiosyncratic working behavior, as different drivers choose to work at 

different times and for varying durations. While the model provides deep insights into drivers’ 

working decisions, it also introduces significant computational burdens in estimation. To overcome 

this challenge, we developed a novel nested iteration estimation method. This method achieves 

comparable accuracy to traditional joint estimation approaches while offering significant 

computational advantages, especially with large-scale datasets involving thousands of parameters. 

This methodological advancement provides a powerful tool for analyzing complex behavioral 

models in extensive datasets. 

Applying the model to a dataset from a ride-sharing platform in Canada, we find substantial 

heterogeneity in drivers’ costs, which aligns with the observed variation in their working behavior. 

More importantly, we use the model estimates to conduct counterfactual analyses and develop 

optimal subsidy strategies to motivate driver effort. We consider a hypothetical scenario in which 

the platform faces a 5% increase in demand and needs to incentivize drivers to meet this demand. 

We evaluate three counterfactual subsidy strategies. In the first baseline case, no subsidy is offered, 

as drivers may increase their work expecting higher earnings due to the demand increase. In the 

second and third cases, we offer subsidies to drivers. In the second case (time-based non-targeting), 

the subsidy varies only by time periods, while in the third case (individual-based targeting), it 

varies by both time periods and individual drivers. This third strategy is a targeted subsidization 

approach based on drivers’ heterogeneous working costs. 

Our findings indicate that because drivers are not highly sensitive to subsidies, the platform incurs 

significant loss by offering time-based non-targeting subsidization relative to the baseline case. 
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However, by customizing the subsidy for each individual driver, the individual-based targeting 

subsidization can substantial costs compared with the time-based non-targeting subsidization and 

achieve the majority level of the profit level it would obtain without subsidies. This suggests that 

targeted subsidies can effectively incentivize drivers while saving costs for the platform.  

Our paper makes significant contributions to both academic literature and managerial practices. 

Academically, we develop a structural model that incorporates heterogeneous working costs and 

rationalizes drivers’ working choices. Additionally, we introduce a novel nested iteration 

estimation method that accommodates the high dimensionality of the parameter space, 

significantly improving estimation efficiency while maintaining high precision. On the managerial 

front, our empirical framework and counterfactual analysis provide actionable guidance for 

platforms to understand drivers’ working behavior and design effective subsidization strategies. 

Our framework can be easily applied to similar ride-sharing platforms. The nested iteration 

estimation approach ensures that the computational burden remains manageable even as the 

number of drivers increases. We demonstrate that platforms can leverage estimates of individual 

drivers’ costs to design targeted subsidy strategies that effectively induce driver effort while  

maintaining reasonable subsidization costs. 

 

There are several limitations related to our study that warrant future research. First, while our 

structural model considers rich heterogeneity in drivers’ supply-side behavior, we do not 

endogenize riders’ demand relative to different levels of supply. We made this choice because our 

main goal is to understand the underlying factors driving drivers' working decisions. We construct 

drivers’ belief of demand by using the observed demand data, which is consistent with drivers’ 

belief formation and empirical approaches adopted by previous studies (Crawford and Meng, 2011; 

Chen et al., 2019; Thakral and Tô, 2021). However, future studies can further consider riders’ 

demand and develop an integrated model to better understand the platform. Second, our model 

allows for dynamics within a day but not across days. Specifically, within a day, drivers’ working 

behavior in prior time periods can influence their costs in subsequent time periods. Such dynamics 

influence drivers’ working decision optimization. However, we do not consider cross-day 

dynamics where drivers’ working behavior in one day could shift their costs in the following days. 

While considering such cross-day dynamics may bring the model closer to reality, it can 

significantly complicate the estimation. Third, the subsidy design in the counterfactual analysis 

may be specific to the platform we study. We consider the subsidy for morning, afternoon, and 

night given that this is the temporal segmentation implemented on the platform. However, other 

platforms may offer different subsidy plans, such as varying subsidies by hour. Therefore, when 
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applying our method to alternative platforms, researchers and managers should consider the 

specific practices and adapt accordingly.
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